6 resultados para Development of drugs

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The phosphoinositide 3-kinase (PI3K) family of signalling enzymes play a key role in the transduction of signals from activated cell surface receptors controlling cell growth and proliferation, survival, metabolism, and migration. The intracellular signalling pathway from activated receptors to PI3K and its downstream targets v-akt murine thymoma viral oncogene homolog (Akt) and mechanistic target of rapamycin (mTOR) is very frequently deregulated by genetic and epigenetic mechanisms in human cancer, including leukaemia and lymphoma. In the past decade, an arsenal of small molecule inhibitors of key enzymes in this pathway has been developed and evaluated in pre-clinical studies and clinical trials in cancer patients. These include pharmacological inhibitors of Akt, mTOR, and PI3K, some of which are approved for the treatment of leukaemia and lymphoma. The PI3K family comprises eight different catalytic isoforms in humans, which have been subdivided into three classes. Class I PI3K isoforms have been extensively studied in the context of human cancer, and the isoforms p110α and p110δ are validated drug targets. The recent approval of a p110δ-specific PI3K inhibitor (idelalisib/Zydelig®) for the treatment of selected B cell malignancies represents the first success in developing these molecules into anti-cancer drugs. In addition to PI3K inhibitors, mTOR inhibitors are intensively studied in leukaemia and lymphoma, and temsirolimus (Torisel®) is approved for the treatment of a type of lymphoma. Based on these promising results it is hoped that additional novel PI3K pathway inhibitors will in the near future be further developed into new drugs for leukaemia and lymphoma.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chemicals can elicit T-cell-mediated diseases such as allergic contact dermatitis and adverse drug reactions. Therefore, testing of chemicals, drugs and protein allergens for hazard identification and risk assessment is essential in regulatory toxicology. The seventh amendment of the EU Cosmetics Directive now prohibits the testing of cosmetic ingredients in mice, guinea pigs and other animal species to assess their sensitizing potential. In addition, the EU Chemicals Directive REACh requires the retesting of more than 30,000 chemicals for different toxicological endpoints, including sensitization, requiring vast numbers of animals. Therefore, alternative methods are urgently needed to eventually replace animal testing. Here, we summarize the outcome of an expert meeting in Rome on 7 November 2009 on the development of T-cell-based in vitro assays as tools in immunotoxicology to identify hazardous chemicals and drugs. In addition, we provide an overview of the development of the field over the last two decades.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper reports an LC-MS/MS method with positive electrospray ionization for the screening of commonly prescribed cardiovascular drugs in human plasma, including compounds with antihypertensive (57), antidiabetic (12), hypolipemiant (5), anticoagulant (2) and platelet anti-aggregation (2) effects. Sample treatment consisted of a simple protein precipitation with MeOH/0.1 M ZnSO₄ (4:1, v/v) solution after the addition of internal standard, followed by evaporation and reconstitution. Analytes separation was performed on a Polar-RP column (150 m x 2 mm, 4 μm) using a gradient elution of 15 min. The MS system was operated in MRM mode, monitoring one quantitation and one confirmation transition for each analyte. The recovery of the protein precipitation step ranged from 50 to 70% for most of the compounds, while some were considerably affected by matrix effects. Since several analytes fulfilled the linearity, accuracy and precision values required by the ICH guidelines, the method proved to be suitable for their quantitative analysis. The limits of quantitation varied from 0.38 to 9.1 μg/L and the limits of detection from 0.12 to 5.34 μg/L. The method showed to be suitable for the detection of plasma samples of patients under cardiovascular treatment with the studied drugs, and for 55 compounds reliable quantitative results could be obtained.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Among the cestodes, Echinococcus granulosus, Echinococcus multilocularis and Taenia solium represent the most dangerous parasites. Their larval stages cause the diseases cystic echinococcosis (CE), alveolar echinococcosis (AE) and cysticercosis, respectively, which exhibit considerable medical and veterinary health concerns with a profound economic impact. Others caused by other cestodes, such as species of the genera Mesocestoides and Hymenolepis, are relatively rare in humans. In this review, we will focus on E. granulosus and E. multilocularis metacestode laboratory models and will review the use of these models in the search for novel drugs that could be employed for chemotherapeutic treatment of echinococcosis. Clearly, improved therapeutic drugs are needed for the treatment of AE and CE, and this can only be achieved through the development of medium-to-high throughput screening approaches. The most recent achievements in the in vitro culture and genetic manipulation of E. multilocularis cells and metacestodes, and the accessability of the E. multilocularis genome and EST sequence information, have rendered the E. multilocularis model uniquely suited for studies on drug-efficacy and drug target identification. This could lead to the development of novel compounds for the use in chemotherapy against echinococcosis, and possibly against diseases caused by other cestodes, and potentially also trematodes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The adenosine receptors are members of the G-protein coupled receptor (GPCR) family which represents the largest class of cell-surface proteins mediating cellular communication. As a result, GPCRs are formidable drug targets and it is estimated that approximately 30% of the marketed drugs act through members of this receptor class. There are four known subtypes of adenosine receptors: A1, A2A, A2B and A3. The adenosine A1 receptor, which is the subject of this presentation, mediates the physiological effects of adenosine in various tissues including the brain, heart, kidney and adipocytes. In the brain for instance, its role in epilepsy and ischemia has been the focus of many studies. Previous attempts to study the biosynthesis, trafficking and agonist-induced internalisation of the adenosine A1 receptor in neurons using fluorescent protein-receptor fusion constructs have been hampered by the sheer size of the fluorescent protein (GFP) that ultimately affected the function of the receptor. We have therefore initiated a research programme to develop small molecule fluorescent agonists that selectively activate the adenosine A1 receptor. Our probe design is based on the endogenous ligand adenosine and the known unselective adenosine receptor agonist NECA. We have synthesised a small library of non-fluorescent adenosine derivatives that have different cyclic and bicyclic moieties at the 6 position of the purine ring and have evaluated the pharmacology of these compounds using a yeast-based assay. This analysis revealed compounds with interesting behaviour, i.e. exhibiting subtype-selectivity and biased signalling, that can be potentially used as tool compounds in their own right for cellular studies of the adenosine A1 receptor. Furthermore, we have also linked fluorescent dyes to the purine ring and discovered fluorescent compounds that can activate the adenosine A1 receptor.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Protein degradation is regulated during the cell cycle of all eukaryotic cells and is mediated by the ubiquitin-proteasome pathway. Potent and specific peptide-derived inhibitors of the 20S proteasome have been developed recently as anti-cancer agents, based on their ability to induce apoptosis in rapidly dividing cells. Here, we tested a novel small molecule dipeptidyl boronic acid proteasome inhibitor, named MLN-273 on blood and liver stages of Plasmodium species, both of which undergo active replication, probably requiring extensive proteasome activity. The inhibitor blocked Plasmodium falciparum erythrocytic development at an early ring stage as well as P. berghei exoerythrocytic progression to schizonts. Importantly, neither uninfected erythrocytes nor hepatocytes were affected by the drug. MLN-273 caused an overall reduction in protein degradation in P. falciparum, as demonstrated by immunoblots using anti-ubiquitin antibodies to label ubiquitin-tagged protein conjugates. This led us to conclude that the target of the drug was the parasite proteasome. The fact that proteasome inhibitors are presently used as anti-cancer drugs in humans forms a solid basis for further development and makes them potentially attractive drugs also for malaria chemotherapy.